Drift Robust Non-rigid Optical Flow Enhancement for Long Sequences

03/07/2016
by   Wenbin Li, et al.
0

It is hard to densely track a nonrigid object in long term, which is a fundamental research issue in the computer vision community. This task often relies on estimating pairwise correspondences between images over time where the error is accumulated and leads to a drift issue. In this paper, we introduce a novel optimization framework with an Anchor Patch constraint. It is supposed to significantly reduce overall errors given long sequences containing non-rigidly deformable objects. Our framework can be applied to any dense tracking algorithm, e.g. optical flow. We demonstrate the success of our approach by showing significant error reduction on 6 popular optical flow algorithms applied to a range of real-world nonrigid benchmarks. We also provide quantitative analysis of our approach given synthetic occlusions and image noise.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset