Doubts on the efficacy of outliers correction methods

07/23/2019 ∙ by Marjorie Fonnesu, et al. ∙ 0

While the utilisation of different methods of outliers correction has been shown to counteract the inferential error produced by the presence of contaminating data not belonging to the studied population; the effects produced by their utilisation when samples do not contain contaminating outliers are less clear. Here a simulation approach shows that the most popular methods of outliers correction (2 Sigma, 3 Sigma, MAD, IQR, Grubbs and winsorizing) worsen the inferential evaluation of the studied population in this condition, in particular producing an inflation of Type I error and increasing the error committed in estimating the population mean and STD. We show that those methods that have the highest efficacy in counteract the inflation of Type I and Type II errors in the presence of contaminating outliers also produce the stronger increase of false positive results in their absence, suggesting that the systematic utilisation of methods for outliers correction risk to produce more harmful than beneficial effect on statistical inference. We finally propose that the safest way to deal with the presence of outliers for statistical comparisons is the utilisation of non-parametric tests



There are no comments yet.


page 6

page 9

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.