Double machine learning for sample selection models
This paper considers treatment evaluation when outcomes are only observed for a subpopulation due to sample selection or outcome attrition/non-response. For identification, we combine a selection-on-observables assumption for treatment assignment with either selection-on-observables or instrumental variable assumptions concerning the outcome attrition/sample selection process. To control in a data-driven way for potentially high dimensional pre-treatment covariates that motivate the selection-on-observables assumptions, we adapt the double machine learning framework to sample selection problems. That is, we make use of (a) Neyman-orthogonal and doubly robust score functions, which imply the robustness of treatment effect estimation to moderate regularization biases in the machine learning-based estimation of the outcome, treatment, or sample selection models and (b) sample splitting (or cross-fitting) to prevent overfitting bias. We demonstrate that the proposed estimators are asymptotically normal and root-n consistent under specific regularity conditions concerning the machine learners. The estimator is available in the causalweight package for the statistical software R.
READ FULL TEXT