Double framed moduli spaces of quiver representations
Motivated by problems in the neural networks setting, we study moduli spaces of double framed quiver representations and give both a linear algebra description and a representation theoretic description of these moduli spaces. We define a network category whose isomorphism classes of objects correspond to the orbits of quiver representations, in which neural networks map input data. We then prove that the output of a neural network depends only on the corresponding point in the moduli space. Finally, we present a different perspective on mapping neural networks with a specific activation function, called ReLU, to a moduli space using the symplectic reduction approach to quiver moduli.
READ FULL TEXT