Double and Triple Erasure-Correcting-Codes over Graphs

12/02/2018
by   Lev Yohananov, et al.
0

In this paper we study array-based codes over graphs for correcting multiple node failures, with applications to neural networks, associative memories, and distributed storage systems. We assume that the information is stored on the edges of a complete undirected graph and a node failure is the event where all the edges in the neighborhood of a given node have been erased. A code over graphs is called ρ-node-erasure-correcting if it allows to reconstruct the erased edges upon the failure of any ρ nodes or less. We present a binary optimal construction for double-node-erasure correction together with an efficient decoding algorithm when the number of nodes is a prime number. Furthermore, we extend this construction for triple-node-erasure-correcting codes when the number of nodes is a prime number and two is a primitive element in _n. These codes are at most a single bit away from optimality.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset