Domain Robustness in Neural Machine Translation
Translating text that diverges from the training domain is a key challenge for neural machine translation (NMT). Domain robustness - the generalization of models to unseen test domains - is low compared to statistical machine translation. In this paper, we investigate the performance of NMT on out-of-domain test sets, and ways to improve it. We observe that hallucination (translations that are fluent but unrelated to the source) is common in out-of-domain settings, and we empirically compare methods that improve adequacy (reconstruction), out-of-domain translation (subword regularization), or robustness against adversarial examples (defensive distillation), as well as noisy channel models. In experiments on German to English OPUS data, and German to Romansh, a low-resource scenario, we find that several methods improve domain robustness, reconstruction standing out as a method that not only improves automatic scores, but also shows improvements in a manual assessments of adequacy, albeit at some loss in fluency. However, out-of-domain performance is still relatively low and domain robustness remains an open problem.
READ FULL TEXT