Domain Mismatch Robust Acoustic Scene Classification using Channel Information Conversion

12/04/2018
by   Seongkyu Mun, et al.
0

In a recent acoustic scene classification (ASC) research field, training and test device channel mismatch have become an issue for the real world implementation. To address the issue, this paper proposes a channel domain conversion using factorized hierarchical variational autoencoder. Proposed method adapts both the source and target domain to a pre-defined specific domain. Unlike the conventional approach, the relationship between the target and source domain and information of each domain are not required in the adaptation process. Based on the experimental results using the IEEE detection and classification of acoustic scenes and event 2018 task 1-B dataset and the baseline system, it is shown that the proposed approach can mitigate the channel mismatching issue of different recording devices.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset