Domain Generalization via Invariant Feature Representation

01/10/2013
by   Krikamol Muandet, et al.
0

This paper investigates domain generalization: How to take knowledge acquired from an arbitrary number of related domains and apply it to previously unseen domains? We propose Domain-Invariant Component Analysis (DICA), a kernel-based optimization algorithm that learns an invariant transformation by minimizing the dissimilarity across domains, whilst preserving the functional relationship between input and output variables. A learning-theoretic analysis shows that reducing dissimilarity improves the expected generalization ability of classifiers on new domains, motivating the proposed algorithm. Experimental results on synthetic and real-world datasets demonstrate that DICA successfully learns invariant features and improves classifier performance in practice.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset