Domain Adaptive Synapse Detection with Weak Point Annotations

08/31/2023
by   Qi Chen, et al.
0

The development of learning-based methods has greatly improved the detection of synapses from electron microscopy (EM) images. However, training a model for each dataset is time-consuming and requires extensive annotations. Additionally, it is difficult to apply a learned model to data from different brain regions due to variations in data distributions. In this paper, we present AdaSyn, a two-stage segmentation-based framework for domain adaptive synapse detection with weak point annotations. In the first stage, we address the detection problem by utilizing a segmentation-based pipeline to obtain synaptic instance masks. In the second stage, we improve model generalizability on target data by regenerating square masks to get high-quality pseudo labels. Benefiting from our high-accuracy detection results, we introduce the distance nearest principle to match paired pre-synapses and post-synapses. In the WASPSYN challenge at ISBI 2023, our method ranks the 1st place.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro