Domain Adapting Speech Emotion Recognition modals to real-world scenario with Deep Reinforcement Learning

07/07/2022
by   Thejan Rajapakshe, et al.
0

Deep reinforcement learning has been a popular training paradigm as deep learning has gained popularity in the field of machine learning. Domain adaptation allows us to transfer knowledge learnt by a model across domains after a phase of training. The inability to adapt an existing model to a real-world domain is one of the shortcomings of current domain adaptation algorithms. We present a deep reinforcement learning-based strategy for adapting a pre-trained model to a newer domain while interacting with the environment and collecting continual feedback. This method was used on the Speech Emotion Recognition task, which included both cross-corpus and cross-language domain adaption schema. Furthermore, it demonstrates that in a real-world environment, our approach outperforms the supervised learning strategy by 42 respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro