Domain Adapted Word Embeddings for Improved Sentiment Classification

05/11/2018
by   Prathusha K Sarma, et al.
0

Generic word embeddings are trained on large-scale generic corpora; Domain Specific (DS) word embeddings are trained only on data from a domain of interest. This paper proposes a method to combine the breadth of generic embeddings with the specificity of domain specific embeddings. The resulting embeddings, called Domain Adapted (DA) word embeddings, are formed by aligning corresponding word vectors using Canonical Correlation Analysis (CCA) or the related nonlinear Kernel CCA. Evaluation results on sentiment classification tasks show that the DA embeddings substantially outperform both generic and DS embeddings when used as input features to standard or state-of-the-art sentence encoding algorithms for classification.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset