Domain Adaptation by Maximizing Population Correlation with Neural Architecture Search
In Domain Adaptation (DA), where the feature distributions of the source and target domains are different, various distance-based methods have been proposed to minimize the discrepancy between the source and target domains to handle the domain shift. In this paper, we propose a new similarity function, which is called Population Correlation (PC), to measure the domain discrepancy for DA. Base on the PC function, we propose a new method called Domain Adaptation by Maximizing Population Correlation (DAMPC) to learn a domain-invariant feature representation for DA. Moreover, most existing DA methods use hand-crafted bottleneck networks, which may limit the capacity and flexibility of the corresponding model. Therefore, we further propose a method called DAMPC with Neural Architecture Search (DAMPC-NAS) to search the optimal network architecture for DAMPC. Experiments on several benchmark datasets, including Office-31, Office-Home, and VisDA-2017, show that the proposed DAMPC-NAS method achieves better results than state-of-the-art DA methods.
READ FULL TEXT