Does Prompt-Tuning Language Model Ensure Privacy?

04/07/2023
by   Shangyu Xie, et al.
0

Prompt-tuning has received attention as an efficient tuning method in the language domain, i.e., tuning a prompt that is a few tokens long, while keeping the large language model frozen, yet achieving comparable performance with conventional fine-tuning. Considering the emerging privacy concerns with language models, we initiate the study of privacy leakage in the setting of prompt-tuning. We first describe a real-world email service pipeline to provide customized output for various users via prompt-tuning. Then we propose a novel privacy attack framework to infer users' private information by exploiting the prompt module with user-specific signals. We conduct a comprehensive privacy evaluation on the target pipeline to demonstrate the potential leakage from prompt-tuning. The results also demonstrate the effectiveness of the proposed attack.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro