DOCmT5: Document-Level Pretraining of Multilingual Language Models

12/16/2021
by   Chia-Hsuan Lee, et al.
0

In this paper, we introduce DOCmT5, a multilingual sequence-to-sequence language model pre-trained with large scale parallel documents. While previous approaches have focused on leveraging sentence-level parallel data, we try to build a general-purpose pre-trained model that can understand and generate long documents. We propose a simple and effective pre-training objective - Document Reordering Machine Translation (DrMT), in which the input documents that are shuffled and masked need to be translated. DrMT brings consistent improvements over strong baselines on a variety of document-level generation tasks, including over 12 BLEU points for seen-language-pair document-level MT, over 7 BLEU points for unseen-language-pair document-level MT and over 3 ROUGE-1 points for seen-language-pair cross-lingual summarization. We achieve state-of-the-art (SOTA) on WMT20 De-En and IWSLT15 Zh-En document translation tasks. We also conduct extensive analysis on various factors for document pre-training, including (1) the effects of pre-training data quality and (2) The effects of combining mono-lingual and cross-lingual pre-training. We plan to make our model checkpoints publicly available.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro