DocFormer: End-to-End Transformer for Document Understanding

06/22/2021 ∙ by Srikar Appalaraju, et al. ∙ 0

We present DocFormer – a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU). VDU is a challenging problem which aims to understand documents in their varied formats (forms, receipts etc.) and layouts. In addition, DocFormer is pre-trained in an unsupervised fashion using carefully designed tasks which encourage multi-modal interaction. DocFormer uses text, vision and spatial features and combines them using a novel multi-modal self-attention layer. DocFormer also shares learned spatial embeddings across modalities which makes it easy for the model to correlate text to visual tokens and vice versa. DocFormer is evaluated on 4 different datasets each with strong baselines. DocFormer achieves state-of-the-art results on all of them, sometimes beating models 4x its size (in no. of parameters).

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 8

page 16

page 17

page 18

page 19

page 20

page 21

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.