docExtractor: An off-the-shelf historical document element extraction

12/15/2020
by   Tom Monnier, et al.
0

We present docExtractor, a generic approach for extracting visual elements such as text lines or illustrations from historical documents without requiring any real data annotation. We demonstrate it provides high-quality performances as an off-the-shelf system across a wide variety of datasets and leads to results on par with state-of-the-art when fine-tuned. We argue that the performance obtained without fine-tuning on a specific dataset is critical for applications, in particular in digital humanities, and that the line-level page segmentation we address is the most relevant for a general purpose element extraction engine. We rely on a fast generator of rich synthetic documents and design a fully convolutional network, which we show to generalize better than a detection-based approach. Furthermore, we introduce a new public dataset dubbed IlluHisDoc dedicated to the fine evaluation of illustration segmentation in historical documents.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset