Do We Really Sample Right In Model-Based Diagnosis?

09/25/2020 ∙ by Patrick Rodler, et al. ∙ 9

Statistical samples, in order to be representative, have to be drawn from a population in a random and unbiased way. Nevertheless, it is common practice in the field of model-based diagnosis to make estimations from (biased) best-first samples. One example is the computation of a few most probable possible fault explanations for a defective system and the use of these to assess which aspect of the system, if measured, would bring the highest information gain. In this work, we scrutinize whether these statistically not well-founded conventions, that both diagnosis researchers and practitioners have adhered to for decades, are indeed reasonable. To this end, we empirically analyze various sampling methods that generate fault explanations. We study the representativeness of the produced samples in terms of their estimations about fault explanations and how well they guide diagnostic decisions, and we investigate the impact of sample size, the optimal trade-off between sampling efficiency and effectivity, and how approximate sampling techniques compare to exact ones.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.