Diversified Patch-based Style Transfer with Shifted Style Normalization
Gram-based and patch-based approaches are two important research lines of image style transfer. Recent diversified Gram-based methods have been able to produce multiple and diverse reasonable solutions for the same content and style inputs. However, as another popular research interest, the diversity of patch-based methods remains challenging due to the stereotyped style swapping process based on nearest patch matching. To resolve this dilemma, in this paper, we dive into the core style swapping process of patch-based style transfer and explore possible ways to diversify it. What stands out is an operation called shifted style normalization (SSN), the most effective and efficient way to empower existing patch-based methods to generate diverse results for arbitrary styles. The key insight is to use an important intuition that neural patches with higher activation values could contribute more to diversity. Theoretical analyses and extensive experiments are conducted to demonstrate the effectiveness of our method, and compared with other possible options and state-of-the-art algorithms, it shows remarkable superiority in both diversity and efficiency.
READ FULL TEXT