Distributionally robust mixed-integer programming with Wasserstein metric: on the value of uncertain data

04/03/2023
by   Sergey S. Ketkov, et al.
0

This study addresses a class of linear mixed-integer programming (MIP) problems that involve uncertainty in the objective function coefficients. The coefficients are assumed to form a random vector, which probability distribution can only be observed through a finite training data set. Unlike most of the related studies in the literature, we also consider uncertainty in the underlying data set. The data uncertainty is described by a set of linear constraints for each random sample, and the uncertainty in the distribution (for a fixed realization of data) is defined using a type-1 Wasserstein ball centered at the empirical distribution of the data. The overall problem is formulated as a three-level distributionally robust optimization (DRO) problem. We prove that for a class of bi-affine loss functions the three-level problem admits a linear MIP reformulation. Furthermore, it turns out that in several important particular cases the three-level problem can be solved reasonably fast by leveraging the nominal MIP problem. Finally, we conduct a computational study, where the out-of-sample performance of our model and computational complexity of the proposed MIP reformulation are explored numerically for several application domains.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset