Distributionally Robust and Multi-Objective Nonnegative Matrix Factorization

01/30/2019
by   Nicolas Gillis, et al.
0

Nonnegative matrix factorization (NMF) is a linear dimensionality reduction technique for analyzing nonnegative data. A key aspect of NMF is the choice of the objective function that depends on the noise model (or statistics of the noise) assumed on the data. In many applications, the noise model is unknown and difficult to estimate. In this paper, we define a multi-objective NMF (MO-NMF) problem, where several objectives are combined within the same NMF model. We propose to use Lagrange duality to judiciously optimize for a set of weights to be used within the framework of the weighted-sum approach, that is, we minimize a single objective function which is a weighted sum of the all objective functions. We design a simple algorithm using multiplicative updates to minimize this weighted sum. We show how this can be used to find distributionally robust NMF solutions, that is, solutions that minimize the largest error among all objectives. We illustrate the effectiveness of this approach on synthetic, document and audio datasets. The results show that DR-NMF is robust to our incognizance of the noise model of the NMF problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset