Distribution-Independent PAC Learning of Halfspaces with Massart Noise

06/24/2019
by   Ilias Diakonikolas, et al.
0

We study the problem of distribution-independent PAC learning of halfspaces in the presence of Massart noise. Specifically, we are given a set of labeled examples (x, y) drawn from a distribution D on R^d+1 such that the marginal distribution on the unlabeled points x is arbitrary and the labels y are generated by an unknown halfspace corrupted with Massart noise at noise rate η<1/2. The goal is to find a hypothesis h that minimizes the misclassification error Pr_(x, y) ∼D[ h(x) ≠ y ]. We give a poly(d, 1/ϵ) time algorithm for this problem with misclassification error η+ϵ. We also provide evidence that improving on the error guarantee of our algorithm might be computationally hard. Prior to our work, no efficient weak (distribution-independent) learner was known in this model, even for the class of disjunctions. The existence of such an algorithm for halfspaces (or even disjunctions) has been posed as an open question in various works, starting with Sloan (1988), Cohen (1997), and was most recently highlighted in Avrim Blum's FOCS 2003 tutorial.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset