Distributed Representation for Traditional Chinese Medicine Herb via Deep Learning Models
Traditional Chinese Medicine (TCM) has accumulated a big amount of precious resource in the long history of development. TCM prescriptions that consist of TCM herbs are an important form of TCM treatment, which are similar to natural language documents, but in a weakly ordered fashion. Directly adapting language modeling style methods to learn the embeddings of the herbs can be problematic as the herbs are not strictly in order, the herbs in the front of the prescription can be connected to the very last ones. In this paper, we propose to represent TCM herbs with distributed representations via Prescription Level Language Modeling (PLLM). In one of our experiments, the correlation between our calculated similarity between medicines and the judgment of professionals achieves a Spearman score of 55.35 indicating a strong correlation, which surpasses human beginners (TCM related field bachelor student) by a big margin (over 10
READ FULL TEXT