Distributed Optimization in Sensor Network for Scalable Multi-Robot Relative State Estimation

03/02/2023
by   Tianyue Wu, et al.
0

This paper is dedicated to achieving scalable relative state estimation using inter-robot Euclidean distance measurements. We consider equipping robots with distance sensors and focus on the optimization problem underlying relative state estimation in this setup. We reveal the commonality between this problem and the coordinates realization problem of a sensor network. Based on this insight, we propose an effective unconstrained optimization model to infer the relative states among robots. To work on this model in a distributed manner, we propose an efficient and scalable optimization algorithm with the classical block coordinate descent method as its backbone. This algorithm exactly solves each block update subproblem with a closed-form solution while ensuring convergence. Our results pave the way for distance measurements-based relative state estimation in large-scale multi-robot systems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset