Distributed Nonconvex Constrained Optimization over Time-Varying Digraphs

09/04/2018
by   Gesualdo Scutari, et al.
0

This paper considers nonconvex distributed constrained optimization over networks, modeled as directed (possibly time-varying) graphs. We introduce the first algorithmic framework for the minimization of the sum of a smooth nonconvex (nonseparable) function--the agent's sum-utility--plus a Difference-of-Convex (DC) function (with nonsmooth convex part). This general formulation arises in many applications, from statistical machine learning to engineering. The proposed distributed method combines successive convex approximation techniques with a judiciously designed perturbed push-sum consensus mechanism that aims to track locally the gradient of the (smooth part of the) sum-utility. Sublinear convergence rate is proved when a fixed step-size (possibly different among the agents) is employed whereas asymptotic convergence to stationary solutions is proved using a diminishing step-size. Numerical results show that our algorithms compare favorably with current schemes on both convex and nonconvex problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset