Distributed Matrix-Vector Multiplication: A Convolutional Coding Approach

01/25/2019
by   Anindya Bijoy Das, et al.
0

Distributed computing systems are well-known to suffer from the problem of slow or failed nodes; these are referred to as stragglers. Straggler mitigation (for distributed matrix computations) has recently been investigated from the standpoint of erasure coding in several works. In this work we present a strategy for distributed matrix-vector multiplication based on convolutional coding. Our scheme can be decoded using a low-complexity peeling decoder. The recovery process enjoys excellent numerical stability as compared to Reed-Solomon coding based approaches (which exhibit significant problems owing their badly conditioned decoding matrices). Finally, our schemes are better matched to the practically important case of sparse matrix-vector multiplication as compared to many previous schemes. Extensive simulation results corroborate our findings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset