Distributed Ledger Technology, Cyber-Physical Systems, and Social Compliance
This paper describes how Distributed Ledger Technologies can be used to design a class of cyber-physical systems, as well as to enforce social contracts and to orchestrate the behaviour of agents trying to access a shared resource. The first part of the paper analyses the advantages and disadvantages of using Distributed Ledger Technologies architectures to implement certain control systems in an Internet of Things (IoT) setting, and then focuses on a specific type of DLT based on a Directed Acyclic Graph. In this setting we propose a set of delay differential equations to describe the dynamical behaviour of the Tangle, an IoT-inspired Directed Acyclic Graph designed for the cryptocurrency IOTA. The second part proposes an application of Distributed Ledger Technologies as a mechanism for dynamic deposit pricing, wherein the deposit of digital currency is used to orchestrate access to a network of shared resources. The pricing signal is used as a mechanism to enforce the desired level of compliance according to a predetermined set of rules. After presenting an illustrative example, we analyze the control system and provide sufficient conditions for the stability of the network.
READ FULL TEXT