Distributed Event-Based State Estimation for Networked Systems: An LMI-Approach

07/06/2017 ∙ by Michael Muehlebach, et al. ∙ 0

In this work, a dynamic system is controlled by multiple sensor-actuator agents, each of them commanding and observing parts of the system's input and output. The different agents sporadically exchange data with each other via a common bus network according to local event-triggering protocols. From these data, each agent estimates the complete dynamic state of the system and uses its estimate for feedback control. We propose a synthesis procedure for designing the agents' state estimators and the event triggering thresholds. The resulting distributed and event-based control system is guaranteed to be stable and to satisfy a predefined estimation performance criterion. The approach is applied to the control of a vehicle platoon, where the method's trade-off between performance and communication, and the scalability in the number of agents is demonstrated.

READ FULL TEXT

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.