Distributed coloring of graphs with an optimal number of colors

09/21/2018
by   Étienne Bamas, et al.
0

This paper studies sufficient conditions to obtain efficient distributed algorithms coloring graphs optimally (i.e. with the minimum number of colors) in the LOCAL model of computation. Most of the work on distributed vertex coloring so far has focused on coloring graphs of maximum degree Δ with at most Δ+1 colors (or Δ colors when some simple obstructions are forbidden). When Δ is a sufficiently large and k>Δ-k_Δ+1, for some integer k_Δ≈√(Δ)-2, we give a distributed algorithm that given a k-colorable graph G of maximum degree Δ, finds a k-coloring of G in {O(Δ^λ n), 2^O(Δ+√( n))} rounds w.h.p., for any λ>0. The lower bound Δ-k_Δ+1 is best possible in the sense that for infinitely many values of Δ, we prove that when χ(G)<Δ -k_Δ, finding an optimal coloring of G requires Ω(n) rounds. Our proof is a light adaptation of a remarkable result of Molloy and Reed, who proved that for Δ large enough, for any k>Δ-k_Δ deciding whether χ(G)< k is in P, while Embden-Weinert et al. proved that for k<Δ-k_Δ-1, the same problem is NP-complete. Note that the sequential and distributed thresholds differ by one. Our second result covers a larger range of parameters, but gives a weaker bound on the number of colors: For any sufficiently large Δ, and Ω(Δ)< d <Δ/100, we prove that every graph of maximum degree Δ and clique number at most Δ-d can be efficiently colored with at most Δ-ϵ d colors, for some absolute constant ϵ >0, with a randomized algorithm running w.h.p. in {O(_Δ n),2^O(Δ+√( n))} rounds.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
01/02/2019

Towards the Locality of Vizing's Theorem

Vizing showed that it suffices to color the edges of a simple graph usin...
research
05/15/2020

Efficient Load-Balancing through Distributed Token Dropping

We introduce a new graph problem, the token dropping game, and we show h...
research
02/15/2018

Distributed coloring in sparse graphs with fewer colors

This paper is concerned with efficiently coloring sparse graphs in the d...
research
06/28/2020

A Fast Distributed Algorithm for (Δ+ 1)-Edge-Coloring

We present a deterministic distributed algorithm in the LOCAL model that...
research
02/14/2021

Simple vertex coloring algorithms

Given a graph G with n vertices and maximum degree Δ, it is known that G...
research
06/23/2021

Distributed coloring and the local structure of unit-disk graphs

Coloring unit-disk graphs efficiently is an important problem in the glo...
research
05/11/2018

Distributed Minimum Vertex Coloring and Maximum Independent Set in Chordal Graphs

We give deterministic distributed (1+ϵ)-approximation algorithms for Min...

Please sign up or login with your details

Forgot password? Click here to reset