1 Introduction
Bandit learning is a central topic in online learning, and has various realworld applications, including clinical trials [23], model selection [16] and recommendation systems [3, 15, 2]. In many tasks using bandit algorithms, it is appealing to employ more agents to learn collaboratively and concurrently in order to speed up the learning process. In many other tasks, the sequential decision making is distributed by nature. For instance, multiple spatially separated labs may be working on the same clinical trial. In such distributed applications, communication between agents is critical, but may also be expensive or timeconsuming. This motivates us to consider efficient protocols for distributed learning in bandit problems.
A straightforward communication protocol for bandit learning is immediate sharing: each agent shares every new sample immediately with others. Under this scheme, agents can have good collaborative behaviors close to that in a centralized setting. However, the amount of communicated data is directly proportional to the total size of collected samples. When the bandit is played for a long timescale, the cost of communication would render this scheme impractical. A natural question to ask is: How much communication is actually needed for nearoptimal performance? In this work, we show that the answer is somewhat surprising: The required communication cost has almost no dependence on the time horizon.
In this paper, we consider the distributed learning of stochastic multiarmed bandits (MAB) and stochastic linear bandits. There are agents interacting with the same bandit instance in a synchronized fashion. In time steps , each agent pulls an arm and observes the associated reward. Between time steps, agents can communicate via a serveragent network. Following the typical formulation of singleagent bandit learning, we consider the task of regret minimization [13, 9, 7]. The total regret of all agents is used as the performance criterion of a communication protocol. The communication cost is measured by the total amount of data communicated in the network. Our goal is to minimize communication cost while maintaining nearoptimal performance, that is, regret comparable to the optimal regret of a single agent in interactions with the bandit instance.
For multiarmed bandits, we propose the DEMAB protocol, which achieves nearoptimal regret. The amount of transmitted data per agent in DEMAB is independent of , and is logarithmic with respect to other parameters. For linear bandits, we propose the DELB protocol, which achieves nearoptimal regret, and has communication cost with at most logarithmic dependence on .
1.1 Problem Setting
Communication Model
The communication network we consider consists of a server and several agents. Agents can communicate with the server by sending or receiving packets. Each data packet contains an integer or a real number. We define the communication cost of a protocol as the number of integers or real numbers communicated between server and agents^{1}^{1}1In our protocols, the number of bits each integer or real number uses is only logarithmic w.r.t. instance scale. Using the number of bits as the definition of communication complexity instead will only result in an additional logarithmic factor. The number of communicated bits is analyzed in appendix.. Several previous works consider the total number of communication rounds [10, 21], while we are more interested in the total amount of data transmitted among all rounds. We assume that communication between server and agents has zero latency. Note that protocols in our model can be easily adapted to a network without a server, by designating an agent as the server.
Distributed Multiarmed Bandits
In distributed multiarmed bandits, there are agents, labeled ,…,. Each agent is given access to the same stochastic armed bandit instance. Each arm in the instance is associated with a reward distribution . is supported on with mean . Without loss of generality, we assume that arm 1 is the best arm (i.e. , ). At each time step , each agent chooses an arm , and receives reward independently sampled from . The goal of the agents is to minimize their total regret, which is defined as
For singleagent MAB, i.e., , the optimal regret bound is [4].
Distributed Linear Bandits
In distributed linear bandits, the agents are given access to the same dimensional stochastic linear bandits instance. In particular, we assume that at time step , agents are given an action set . Agent chooses action and observes reward . We assume that the mean of the reward is decided by an unknown parameter : , where are independent and have zero mean. For simplicity, we assume . For distributed linear bandits, the cumulative regret is defined as the sum of individual agent’s regrets:
Here, we assume that the action set is fixed. A more general setting considers a timevarying action set . In both cases, algorithms with regret have been proposed [1], while a regret lower bound of is shown in [9].
For both distributed multiarmed bandits and distributed linear bandits, our goal is to use as little communication as possible to achieve nearoptimal regret. Since any agent protocol running for steps can be simulated by a singleagent bandit algorithm running for time steps, the regret of any protocol is lower bounded by the optimal regret of a singleagent algorithm running for time steps. Therefore, we consider regret for multiarmed bandits and regret for linear bandits to be nearoptimal.
We are mainly interested in the case where the time horizon is the dominant factor (compared to or ). Unless otherwise stated, we assume that in the multiarmed bandits case and in the linear bandits case.
1.2 Our Contribution
Now we give an overview of our results. In both settings, we present communicationefficient protocols that achieve nearoptimal regret. Our results are summarized in Table 1.
Our results are compared with a naive baseline solution called immediate sharing in Table 1: each agent sends the index of the arm he pulled and the corresponding reward he received to every other agent via the server immediately. This protocol can achieve nearoptimal regret for both MAB and linear bandits ( and ), but comes with high communication cost ( and ).
Distributed MAB
For distributed multiarmed bandits, we propose DEMAB (Distributed Elimination for MAB) protocol, which achieves near optimal regret () with communication cost. The communication cost is independent of the number of time steps and grows only logarithmically w.r.t. the number of arms. We also prove the following lower bound: When expected communication cost is less than ( is a universal constant), the total regret is trivially . That is, in order to achieve nearoptimal regret, the communication cost of DEMAB matches the lower bound except for logarithmic factors.
Distributed Linear Bandits
We propose DELB (Distributed Elimination for Linear Bandits), an elimination based protocol for distributed linear bandits which achieves nearoptimal regret bound () with communication cost . The communication cost of DELB enjoys nearly linear dependence on both and , and has at most logarithmic dependence on . For the more general case where the action set is timevarying, the DisLinUCB (Distributed LinUCB) protocol still achieves nearoptimal regret, but requires communication cost.
2 Related Work
There has been growing interest in bandits problems with multiple players. One line of research considers the challenging problem of multiarmed bandits with collisions [19, 6, 11], in which the reward for an arm is 0 if it is chosen by more than one player. The task is to minimize regret without communication. Their setting is motivated by problems in cognitive radio networks, and is fairly different from ours.
In [20] and [12], the authors consider the distributed learning of MAB and linear bandits with restriction on the communication network. In [20], motivated by fully decentralized applications, the authors consider P2P communication networks, where an agent can communicate with only two other agents at each time step. A gossipbased greedy algorithm is proposed for distributed MAB. Their algorithm achieves a speedup linear in in terms of error rate, but the communication cost is linear in . The work of [12] uses a gossip protocol for regret minimization in distributed linear bandits. The main difference between their setting and ours is that each agent is only allowed to communicate with one agent at each time step in [12] ^{2}^{2}2Our algorithms can be modified to meet this restriction with almost no change in performance.. Their algorithm achieves nearoptimal () total regret using communication cost.
Another setting in literature concerns about distributed pure exploration in multiarmed bandits [10, 21], where the communication model is the most similar one to ours. These works use elimination based protocols for collaborative exploration, and establish tight bounds for communicationspeedup tradeoff. In the fixed confidence setting, near optimal () speedup is achieved with only communication rounds when identifying an optimal arm [10]. In the fixedtime setting, near optimal speedup in exploration can be achieved with only communication rounds [21]. However, their task (speedup in pure exploration) is not directly comparable to ours (i.e. are not reducible to each other). Moreover, in [10, 21], the number of communication rounds is used as the measure of communication, while we use the amount of transmitted data.
3 Main Results for Multiarmed Bandits
In this section, we first summarize the singleagent elimination algorithm [5], and then present our Distributed Elimination for MAB (DEMAB) protocol. The regret and communication efficiency of the protocol is then analyzed in Sec. 3.3. A communication lower bound is presented in Sec. 3.4.
3.1 Elimination Algorithm for Singleagent MAB
The elimination algorithm [5] is a nearoptimal algorithm for singleagent MAB. The agent acts in phases , and maintains a set of active arms . Initially, (all arms). In phase , each arm in is pulled for times; arms with average reward lower than the maximum are then eliminated from .
For each arm , define its suboptimality gap to be
. In the elimination algorithm, with high probability arm
will be eliminated after approximately phases, in which it is pulled for at most times. It follows that regret is , which is almost instanceoptimal. The regret is in the worst case.3.2 The DEMAB Protocol
The DEMAB protocol executes in two stages. In the first stage, each agent directly runs the singleagent elimination algorithm for time steps. The remaining arms of agent are denoted as . In time steps, an agent completes at least phases. The purpose of this separate burnin period is to eliminate the worst arms quickly without communication, so that in the second stage, elimination can begin with a small threshold of . and is chosen so that the total regret within the first stage is .
Between the two stages, the remaining arms are randomly allocated to agents. Public randomness is used to allocate the remaining arms to save communication. Agents first generate , uniformly random numbers in , from a public random number generator. Agent then computes . By doing so, agent keeps each arm in with probability , and the resulting sets are disjoint. Meanwhile, every arm in is kept in , so that the best arm remains in with high probability^{3}^{3}3 may not be a subset of , which is not a problem in the regret analysis..
In the second stage, agents start to simulate a singleagent elimination algorithm starting from phase . Initially, the arm set is . In phase , each arm in will be pulled for at least times. Denote the average reward of arm in phase by . If , it will be eliminated; the arm set after the elimination is .
This elimination in the second stage is performed over agents in two ways: In distributed mode or in centralized mode. Let be the number of remaining arms at the start of phase . If is larger than , the elimination is performed in distributed mode. That is, agent keeps a set of arms , and pulls each arm in for times in phase . Each agent only needs to send the highest average reward to the server, who then computes and broadcasts . Agent then eliminates lowrewarding arms from on its local copy.
When , the elimination is performed in centralized mode. That is, will be kept and updated by the server^{4}^{4}4In the conversion from distributed mode to centralized mode, agents send their local copy to the server, which has communication cost.. In phase , the server assigns an arm in to agents, and asks each of them to pull it times^{5}^{5}5The indivisible case is handled in Appendix A .. The server waits for the average rewards to be reported, and then performs elimination on .
One critical issue here is load balancing, especially in distributed mode. Suppose that , . Then the length of phase is determined by . Agent would need to keep pulling arms for times until the start of the next communication round. This will cause an arm to be pulled for much more than times in phase , and can hurt the performance. Therefore, it is vital that at the start of phase , is balanced^{6}^{6}6
By saying a vector of numbers to be balanced, we mean the maximum is at most twice the minimum.
.The subroutine Reallocate is designed to ensure this by reallocating arms when is not balanced. First, the server announces the total number of arms; then, agents with morethanaverage number of arms donate surplus arms to the server; the server then distributes the donated arms to the other agents, so that every agent has the same number of arms. However, calling Reallocate is communicationexpensive: it takes communication cost, where is the current phase and is the last phase where Reallocate is called. Fortunately, since are generated randomly, it is unlikely that one of them contain too many good arms or too many bad arms. By exploiting shared randomness, we greatly reduce the expected communication cost needed for load balancing.
Detailed descriptions of the singleagent elimination algorithm, the Reallocate subroutine, and the DEMAB protocol are provided in Appendix A.
Access to a public random number generator, which is capable of generating and sharing random numbers with all agents with negligible communication cost, is assumed in DEMAB. This is not a strong assumption, since it is well known that a public random number generator can be replaced by private random numbers with a little additional communication [17]. In our case, only additional bits of communication, or additional communication cost, are required for all of our theoretical guarantees to hold. See Appendix B for detailed discussion.
3.3 Regret and Communication Efficiency of DEMAB
In this subsection, we show that the DEMAB protocol achieves nearoptimal regret with efficient communication, as captured by the following theorem.
Theorem 1.
The DEMAB protocol incurs regret, communication cost with probability , and communication cost in expectation.
The worstcase regret bound above can be improved to an instancedependent nearoptimal regret bound by changing the choice of and to . In that case the communication cost is , which is a small increase. See Theorem 5 in Appendix B for detailed discussion.
We now give a sketch of the proof of Theorem 1.
Regret
In the first stage, each agent runs a separate elimination algorithm for timesteps, which has regret . Total regret for all agents in this stage is . After the first stage, each agent must have completed at least phases. Hence, with high probability, before the second stage, contains the optimal arm and only arms with suboptimality gap less than .
In the second stage, if , it will be pulled at most times in phase because of our load balancing effort. Therefore, if arm has suboptimality gap , it will be pulled for times. It follows that regret in the second stage is , and that total regret is .
Communication
In the first stage and the random allocation of arms, no communication is needed. The focus is therefore on the second stage.
During a phase, apart from the potential cost of calling Reallocate, communication cost is . The communication cost of calling Reallocate in phase is at most , where is the last phase where Reallocate is called. Therefore, total cost for calling Reallocate in one execution is at most , where is the first phase in which Reallocate is called. From the definition of and , we can see that there are at most phases in the second stage. Therefore in the worst case, communication cost is since .
However, in expectation, is much smaller than . Because of the random allocation, when is large enough, would be balanced with high probability. In fact, with probability , . Setting , we can show that the expected communication complexity is .
3.4 Lower Bound
Intuitively, in order to avoid a scaling of regret, amount of communication cost is necessary; otherwise, most of the agents can hardly do better than a singleagent algorithm. We prove this intuition in the following theorem.
Theorem 2.
For any protocol with expected communication cost less than , there exists a MAB instance such that total regret is .
The theorem is proved using a reduction from singleagent bandits to multiagent bandits, i.e. a mapping from protocols to singleagent algorithms.
One can trivially achieve regret with communication cost by running an optimal MAB algorithm separately. Therefore, Theorem 2 essentially gives a lower bound on communication cost for achieving nontrivial regret. The communication cost of DEMAB is only slightly larger than this lower bound, but DEMAB achieves nearoptimal regret. This suggests that the communicationregret tradeoff for distributed MAB is a steep one: with communication cost, regret can be nearoptimal; with slightly less communication, regret necessarily deteriorates to the trivial case.
4 Main Results for Linear Bandits
In this section, we summarize the singleagent elimination algorithm (algorithm 12 in [14]), and present the Distributed Elimination for Linear Bandits (DELB) protocol. This protocol is designed for the case where the action set is fixed, and has communication cost with almost linear dependence on and . Our results for linear bandits with timevarying action set is presented in Sec. 4.4. For convenience, we assume is a finite set, which is without loss of generality^{7}^{7}7When is infinite, we can replace with an net of , and only take actions in the net. If , this will not influence the regret. This is a feasible approach, but may not be efficient..
4.1 Elimination Algorithm for Singleagent Linear Bandit
The elimination algorithm for linear bandits [14] also iteratively eliminates arms from the initial action set. In phase , the algorithm maintains an active action set . It computes a distribution over and pulls arms according to . Suppose pulls are made in this phase according to
. We use linear regression to estimate the mean reward of each arm based on these pulls. Arms with estimated rewards
lower than the maximum are eliminated at the end of the phase.To eliminate arms with suboptimality gap in phase with high probability, the estimation error in phase needs to be less than . On the other hand, to achieve tight regret, the number of pulls we make in phase needs to be as small as possible. Let and . According to the analysis in [14] (Chapter 21), if we choose each arm exactly times, the estimation error for any arm is at most with high probability. This means that we need to find a distribution that minimizes , which is equivalent to a wellknown problem called optimal design [18]. One can find a distribution minimizing with . The support set of (a.k.a. the core set) has size at most . As a result, only pulls are needed in phase .
4.2 The DELB Protocol
In this protocol, we parallelize the data collection part of each phase by sending instructions to agents in a communicationefficient way. In phase , the server and the agents both locally solve the same optimal design problem on , the remaining set of actions. We only need to find a approximation to the optimal . That is, we only need to find satisfying . On the other hand, we require the solution to have a support smaller than . This is feasible since the FrankWolfe algorithm under appropriate initialization can find such an approximate solution for finite action sets (see Proposition 3.17 [22]). After that server assigns arms to agents. Since both the server and agents obtain the same core set by solving optimal design, the server only needs to send the index among arms to identify and allocate each arm. After pulling arms, agents send the results to the server, who summarizes the results with linear regression. Agents and the server then eliminate low rewarding arms from their local copy of .
For convenience, we define
4.3 Regret and Communication Efficiency of DELB
We state our results for the eliminationbased protocol for distributed linear bandits. The full proof is given in Appendix F.
Theorem 3.
The DELB protocol achieves expected regret with communication cost .
Proof sketch: In round , the number of pulls is at most . Based on the analysis for eliminationbased algorithm, we can show that the suboptimality gap is at most with probability for any arm pulled in phase . Suppose there are at most phases, we can prove that
In each phase, communication cost comes from three parts: assigning arms to agents, receiving average rewards of each arm and sending to agents. In the first and second part, each arm is designated to as few agents as possible. We can show that the communication cost of these parts is . In the third part, the cost of sending is . Since is at most , the total communication is ∎
4.4 Protocol for Linear Bandits with Timevarying Action Set
In some previous work on linear bandits [8, 1], the action set available at timestep may be timevarying. That is, players can only choose actions from at time , while regret is defined against the optimal action in . The DELB protocol does not apply in this scenario. To handle this setting, we propose a different protocol DisLinUCB (Distributed LinUCB) based on LinUCB [1]. We only state the main results here. Detailed description of the protocol and the proof are given in Appendix G and Appendix H.
Theorem 4.
DisLinUCB protocol achieves expected regret of with communication cost.
Although the regret bound is still nearoptimal, the communication cost has worse dependencies on and compared to that of DELB.
References
 [1] Yasin AbbasiYadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic bandits. In Advances in Neural Information Processing Systems, pages 2312–2320, 2011.
 [2] Naoki Abe, Alan W Biermann, and Philip M Long. Reinforcement learning with immediate rewards and linear hypotheses. Algorithmica, 37(4):263–293, 2003.
 [3] Deepak Agarwal, BeeChung Chen, Pradheep Elango, Nitin Motgi, SeungTaek Park, Raghu Ramakrishnan, Scott Roy, and Joe Zachariah. Online models for content optimization. In Advances in Neural Information Processing Systems, pages 17–24, 2009.
 [4] JeanYves Audibert and Sébastien Bubeck. Minimax policies for adversarial and stochastic bandits. In COLT, pages 217–226, 2009.
 [5] Peter Auer and Ronald Ortner. Ucb revisited: Improved regret bounds for the stochastic multiarmed bandit problem. Periodica Mathematica Hungarica, 61(12):55–65, 2010.
 [6] Ilai Bistritz and Amir Leshem. Distributed multiplayer banditsa game of thrones approach. In Advances in Neural Information Processing Systems, pages 7222–7232, 2018.

[7]
Sébastien Bubeck, Nicolo CesaBianchi, et al.
Regret analysis of stochastic and nonstochastic multiarmed bandit
problems.
Foundations and Trends® in Machine Learning
, 5(1):1–122, 2012. 
[8]
Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire.
Contextual bandits with linear payoff functions.
In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
, pages 208–214, 2011.  [9] Varsha Dani, Thomas P. Hayes, and Sham M. Kakade. Stochastic linear optimization under bandit feedback. In 21st Annual Conference on Learning Theory  COLT 2008, Helsinki, Finland, July 912, 2008, pages 355–366, 2008.
 [10] Eshcar Hillel, Zohar S Karnin, Tomer Koren, Ronny Lempel, and Oren Somekh. Distributed exploration in multiarmed bandits. In Advances in Neural Information Processing Systems, pages 854–862, 2013.
 [11] Dileep Kalathil, Naumaan Nayyar, and Rahul Jain. Decentralized learning for multiplayer multiarmed bandits. IEEE Transactions on Information Theory, 60(4):2331–2345, 2014.
 [12] Nathan Korda, Balázs Szörényi, and Li Shuai. Distributed clustering of linear bandits in peer to peer networks. In Journal of machine learning research workshop and conference proceedings, volume 48, pages 1301–1309. International Machine Learning Societ, 2016.
 [13] Tze Leung Lai et al. Adaptive treatment allocation and the multiarmed bandit problem. The Annals of Statistics, 15(3):1091–1114, 1987.
 [14] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. preprint, 2019.
 [15] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A contextualbandit approach to personalized news article recommendation. In Proceedings of the 19th international conference on World wide web, pages 661–670. ACM, 2010.
 [16] Oded Maron and Andrew W Moore. Hoeffding races: Accelerating model selection search for classification and function approximation. In Advances in neural information processing systems, pages 59–66, 1994.
 [17] Ilan Newman. Private vs. common random bits in communication complexity. Information processing letters, 39(2):67–71, 1991.
 [18] Friedrich Pukelsheim. Optimal design of experiments. SIAM, 2006.
 [19] Jonathan Rosenski, Ohad Shamir, and Liran Szlak. Multiplayer bandits–a musical chairs approach. In International Conference on Machine Learning, pages 155–163, 2016.
 [20] Balázs Szörényi, Róbert BusaFekete, István Hegedűs, Róbert Ormándi, Márk Jelasity, and Balázs Kégl. Gossipbased distributed stochastic bandit algorithms. In Journal of Machine Learning Research Workshop and Conference Proceedings, volume 2, pages 1056–1064. International Machine Learning Societ, 2013.
 [21] Chao Tao, Qin Zhang, and Yuan Zhou. Collaborative learning with limited interaction: Tight bounds for distributed exploration in multiarmed bandits. arXiv preprint:1904.03293, 2019.
 [22] Michael J Todd. Minimumvolume ellipsoids: Theory and algorithms, volume 23. SIAM, 2016.
 [23] YouGan Wang. Sequential allocation in clinical trials. Communications in StatisticsTheory and Methods, 20(3):791–805, 1991.
Appendix A A Detailed Description of DEMAB
In this section, we give a detailed description of the DEMAB protocol and some subroutines used in the protocol.
Eliminate: Eliminate executes the singleagent elimination algorithm. In this function, each agent runs the singleagent elimination algorithm for time steps, then return the remaining arms.
Reallocate: In Reallocate, the server announces the average number of arms; agents with morethanaverage arms then donate surplus arms to the server; the server then distributes the donated arms to the other agents, so that every agent has nearly the same number of arms. After calling Reallocate, becomes balanced again. The function contains the following two parts: One running on the server, and the other running on each agent.
Centralize: When the number of arms drops below , the subroutine Centralize is called, in which agents send their local copy of remaining arms, , to the server, and server receives .
Assignment Strategy: In centralized mode, server assigns arms to agents in the following way. Let . If is exactly divisible by , for each arm in , server asks separate agents to play it for times. If not, we allocate pulls to agents in the following way: Let denote the average pulls each agent needs to perform. Our assignment starts from the arm with the smallest index and agent 1. For arm and agent , if agent has been assigned pulls, we turn to agent . If we have finished allocating pulls for arm , we continue designating arm . The assignment is finished until all pulls are scheduled to agents.
Appendix B B Proof of Theorem 1
In this section, we give a full proof of Theorem 1, which bounds the total regret and communication cost of the DEMAB protocol. In the analysis below, we will use to represent (in the distributed mode) or (in the centralized mode). It refers to the set of remaining arms at the start of the th phase at stage 2, either held separately by the agents or held by the server.
Suppose that the protocol terminates when . We also let be the number of times arm is pulled before time step . Without loss of generality, we assume that arm is the best arm, and define .
We first state a few facts and lemmas.
Fact 1.
We state some facts regarding the execution of the algorithm.

At line of the server’s part in Reallocate, ;

After Reallocate is called, is balanced;

For any player , the number of completed phases in stage 1 is at least ;

The number of phases at stage 2 is at most .
Proof.
1. Let and . At line 3 of server’s reallocate code, server receives arms. At line 5, arms are removed. So at line 6 .
2. Let . If , the reallocation procedure will do nothing, and is by definition balanced. If , then at the end of the reallocation procedure, every player has a new set of arms such that . This implies that the number of arms is balanced, since when reallocation is called, .
3. The length of the th phase at stage is at most . After phases, the number of timesteps satisfies . Set . We can see that the number of phases at stage 1 is at least .
4. Suppose that phase is completed. Since at least pulls are made in phase , we can show that . On the same time, . Therefore the number of phases at stage 2 satisfies
∎
Via a direct application of Hoeffding’s inequality and union bound, we have the following lemma.
Lemma B.1.
Let be the maximum number of phases for all agents at stage 1. Denote the average rewards computed by agent in phase of stage 1 be . With probability at least , for all phases , any agent , any arm ,
Proof.
Observe that and by Fact 1.3.
For any agent , any phase , denote the empirical mean for arm in phase by . By a direct application of Hoeffding’s bound and union bound, we can observe that for any fixed , by Hoeffding’s bound,
Take a union bound for agents , arms , and phases , the desired result is proved. ∎
Lemma B.2.
At the end of stage 1, the following holds with probability :

, for all , (If exists);

, for all , , (If exists);

;

, ;

;
Denote the event that the above holds by .
Proof.
These results are direct implications of lemma B.1.
1. Notice that
with probability . Thus, arm 1 will never be eliminated throughout the first phases.
2. For any ,
with probability , which means
Comments
There are no comments yet.