Distributed Backup Placement in One Round and its Applications to Maximum Matching Approximation and Self-Stabilization

08/15/2019
by   Leonid Barenboim, et al.
0

In the distributed backup-placement problem each node of a network has to select one neighbor, such that the maximum number of nodes that make the same selection is minimized. This is a natural relaxation of the perfect matching problem, in which each node is selected just by one neighbor. Previous (approximate) solutions for backup placement are non-trivial, even for simple graph topologies, such as dense graphs. In this paper we devise an algorithm for dense graph topologies, including unit disk graphs, unit ball graphs, line graphs, graphs with bounded diversity, and many more. Our algorithm requires just one round, and is as simple as the following operation. Consider a circular list of neighborhood IDs, sorted in an ascending order, and select the ID that is next to the selecting vertex ID. Surprisingly, such a simple one-round strategy turns out to be very efficient for backup placement computation in dense networks. Not only that it improves the number of rounds of the solution, but also the approximation ratio is improved by a multiplicative factor of at least 2. Our new algorithm has several interesting implications. In particular, it gives rise to a (2 + ϵ)-approximation to maximum matching within O(^* n) rounds in dense networks. The resulting algorithm is very simple as well, in sharp contrast to previous algorithms that compute such a solution within this running time. Moreover, these algorithms are applicable to a narrower graph family than our algorithm. For the same graph family, the best previously-known result has O(Δ + ^* n) running time. Another interesting implication is the possibility to execute our backup placement algorithm as-is in the self-stabilizing setting. This makes it possible to simplify and improve other algorithms for the self-stabilizing setting, by employing helpful properties of backup placement.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
02/23/2019

Fast Distributed Backup Placement in Sparse and Dense Graphs

We consider the Backup Placement problem in networks in the CONGEST dist...
research
05/08/2020

Distributed K-Backup-Placement and Applications to Virtual Memory in Heterogeneous Networks

The Backup Placement problem in networks in the CONGEST distributed sett...
research
04/24/2018

Fast and Efficient Distributed Computation of Hamiltonian Cycles in Random Graphs

We present fast and efficient randomized distributed algorithms to find ...
research
05/08/2020

Distributed K-Backup Placement and Applications to Virtual Memory in Real-World Wireless Networks

The Backup Placement problem in networks in the CONGEST distributed sett...
research
06/19/2020

Multi-Round Influence Maximization

In this paper, we study the Multi-Round Influence Maximization (MRIM) pr...
research
05/07/2023

Speedup of Distributed Algorithms for Power Graphs in the CONGEST Model

We obtain improved distributed algorithms in the CONGEST message-passing...
research
05/07/2019

Distributed Construction of Light Networks

A t- spanner H of a weighted graph G=(V,E,w) is a subgraph that approxim...

Please sign up or login with your details

Forgot password? Click here to reset