Distributed Attack-Robust Submodular Maximization for Multi-Robot Planning
We aim to guard swarm-robotics applications against denial-of-service (DoS) failures/attacks that result in withdrawals of robots. We focus on applications requiring the selection of actions for each robot, among a set of available ones, e.g., which trajectory to follow. Such applications are central in large-scale robotic/control applications, e.g., multi-robot motion planning for target tracking. But the current attack-robust algorithms are centralized, and scale quadratically with the problem size (e.g., number of robots). Thus, in this paper, we propose a general-purpose distributed algorithm towards robust optimization at scale, with local communications only. We name it distributed robust maximization (DRM). DRM proposes a divide-and-conquer approach that distributively partitions the problem among K cliques of robots. The cliques optimize in parallel, independently of each other. That way, DRM also offers significant computational speed-ups up to 1/K^2 the running time of its centralized counterparts. K depends on the robots' communication range, which is given as input to DRM. DRM also achieves a close-to-optimal performance, equal to the guaranteed performance of its centralized counterparts. We demonstrate DRM's performance in both Gazebo and MATLAB simulations, in scenarios of active target tracking with swarms of robots. We observe DRM achieves significant computational speed-ups (it is 3 to 4 orders faster) and, yet, nearly matches the tracking performance of its centralized counterparts.
READ FULL TEXT