Distributed Anytime MAP Inference

02/14/2012
by   Joop van de Ven, et al.
0

We present a distributed anytime algorithm for performing MAP inference in graphical models. The problem is formulated as a linear programming relaxation over the edges of a graph. The resulting program has a constraint structure that allows application of the Dantzig-Wolfe decomposition principle. Subprograms are defined over individual edges and can be computed in a distributed manner. This accommodates solutions to graphs whose state space does not fit in memory. The decomposition master program is guaranteed to compute the optimal solution in a finite number of iterations, while the solution converges monotonically with each iteration. Formulating the MAP inference problem as a linear program allows additional (global) constraints to be defined; something not possible with message passing algorithms. Experimental results show that our algorithm's solution quality outperforms most current algorithms and it scales well to large problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro