Distributed Adaptive Nearest Neighbor Classifier: Algorithm and Theory

by   Ruiqi Liu, et al.

When data is of an extraordinarily large size or physically stored in different locations, the distributed nearest neighbor (NN) classifier is an attractive tool for classification. We propose a novel distributed adaptive NN classifier for which the number of nearest neighbors is a tuning parameter stochastically chosen by a data-driven criterion. An early stopping rule is proposed when searching for the optimal tuning parameter, which not only speeds up the computation but also improves the finite sample performance of the proposed Algorithm. Convergence rate of excess risk of the distributed adaptive NN classifier is investigated under various sub-sample size compositions. In particular, we show that when the sub-sample sizes are sufficiently large, the proposed classifier achieves the nearly optimal convergence rate. Effectiveness of the proposed approach is demonstrated through simulation studies as well as an empirical application to a real-world dataset.


page 1

page 2

page 3

page 4


Rates of Convergence for Large-scale Nearest Neighbor Classification

Nearest neighbor is a popular class of classification methods with many ...

An adaptive nearest neighbor rule for classification

We introduce a variant of the k-nearest neighbor classifier in which k i...

Extrapolation Towards Imaginary 0-Nearest Neighbour and Its Improved Convergence Rate

k-nearest neighbour (k-NN) is one of the simplest and most widely-used m...

Under-bagging Nearest Neighbors for Imbalanced Classification

In this paper, we propose an ensemble learning algorithm called under-ba...

Distributed Nearest Neighbor Classification

Nearest neighbor is a popular nonparametric method for classification an...

Enhanced Nearest Neighbor Classification for Crowdsourcing

In machine learning, crowdsourcing is an economical way to label a large...

Multi-hypothesis classifier

Accuracy is the most important parameter among few others which defines ...