Distinguishing Cause from Effect Based on Exogeneity

04/22/2015
by   Kun Zhang, et al.
0

Recent developments in structural equation modeling have produced several methods that can usually distinguish cause from effect in the two-variable case. For that purpose, however, one has to impose substantial structural constraints or smoothness assumptions on the functional causal models. In this paper, we consider the problem of determining the causal direction from a related but different point of view, and propose a new framework for causal direction determination. We show that it is possible to perform causal inference based on the condition that the cause is "exogenous" for the parameters involved in the generating process from the cause to the effect. In this way, we avoid the structural constraints required by the SEM-based approaches. In particular, we exploit nonparametric methods to estimate marginal and conditional distributions, and propose a bootstrap-based approach to test for the exogeneity condition; the testing results indicate the causal direction between two variables. The proposed method is validated on both synthetic and real data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset