DeepAI AI Chat
Log In Sign Up

Distance-based phylogenetic inference from typing data: a unifying view

06/12/2020
by   Cátia Vaz, et al.
0

Typing methods are widely used in the surveillance of infectious diseases, outbreaks investigation and studies of the natural history of an infection. And their use is becoming standard, in particular with the introduction of High Throughput Sequencing (HTS). On the other hand, the data being generated is massive and many algorithms have been proposed for phylogenetic analysis of typing data, addressing both correctness and scalability issues. Most of the distance-based algorithms for inferring phylogenetic trees follow the closest-pair joining scheme. This is one of the approaches used in hierarchical clustering. And although phylogenetic inference algorithms may seem rather different, the main difference among them resides on how one defines cluster proximity and on which optimization criterion is used. Both cluster proximity and optimization criteria rely often on a model of evolution. In this work we review, and we provide an unified view of these algorithms. This is an important step not only to better understand such algorithms, but also to identify possible computational bottlenecks and improvements, important to deal with large data sets.

READ FULL TEXT

page 1

page 2

page 3

page 4

08/25/2016

Incremental Minimax Optimization based Fuzzy Clustering for Large Multi-view Data

Incremental clustering approaches have been proposed for handling large ...
09/17/2021

Level Sets or Gradient Lines? A Unifying View of Modal Clustering

The paper establishes a strong correspondence, if not an equivalence, be...
07/09/2020

Inferring proximity from Bluetooth Low Energy RSSI with Unscented Kalman Smoothers

The Covid-19 pandemic has resulted in a variety of approaches for managi...
04/20/2020

Flow-based Algorithms for Improving Clusters: A Unifying Framework, Software, and Performance

Clustering points in a vector space or nodes in a graph is a ubiquitous ...
10/07/2022

A unified approach to radial, hyperbolic, and directional distance models in Data Envelopment Analysis

The paper analyzes properties of a large class of "path-based" Data Enve...