DISPATCH: An Optimally-Competitive Algorithm for Maximum Online Perfect Bipartite Matching with i.i.d. Arrivals

by   Minjun Chang, et al.

This work presents the first algorithm for the problem of weighted online perfect bipartite matching with i.i.d. arrivals. Previous work only considered adversarial arrival sequences. In this problem, we are given a known set of workers, a distribution over job types, and non-negative utility weights for each worker, job type pair. At each time step, a job is drawn i.i.d. from the distribution over job types. Upon arrival, the job must be irrevocably assigned to a worker. The goal is to maximize the expected sum of utilities after all jobs are assigned. Our work is motivated by the application of ride-hailing, where jobs represent passengers and workers represent drivers. We introduce DISPATCH, a 0.5-competitive, randomized algorithm and prove that 0.5-competitive is the best possible. DISPATCH first selects a "preferred worker" and assign the job to this worker if it is available. The preferred worker is determined based on an optimal solution to a fractional transportation problem. If the preferred worker is not available, DISPATCH randomly selects a worker from the available workers. We show that DISPATCH maintains a uniform distribution over the workers even when the distribution over the job types is non-uniform.


page 1

page 2

page 3

page 4


DISPATCH: An Optimal Algorithm for Online Perfect Bipartite Matching with i.i.d. Arrivals

This work presents the first algorithm for the problem of weighted onlin...

Online Total Completion Time Scheduling on Parallel Identical Machines

We investigate deterministic non-preemptive online scheduling with delay...

Online Task Assignment Problems with Reusable Resources

We study online task assignment problem with reusable resources, motivat...

Scheduling Stochastic Real-Time Jobs in Unreliable Workers

We consider a distributed computing network consisting of a master and m...

Randomized algorithms for fully online multiprocessor scheduling with testing

We contribute the first randomized algorithm that is an integration of a...

Improved Online Contention Resolution for Matchings and Applications to the Gig Economy

Motivated by applications in the gig economy, we study approximation alg...

Computing a Subgame Perfect Equilibrium of a Sequential Matching Game

We study a decentralized matching market in which each firm sequentially...

Please sign up or login with your details

Forgot password? Click here to reset