DiSECt: A Differentiable Simulation Engine for Autonomous Robotic Cutting

by   Eric Heiden, et al.

Robotic cutting of soft materials is critical for applications such as food processing, household automation, and surgical manipulation. As in other areas of robotics, simulators can facilitate controller verification, policy learning, and dataset generation. Moreover, differentiable simulators can enable gradient-based optimization, which is invaluable for calibrating simulation parameters and optimizing controllers. In this work, we present DiSECt: the first differentiable simulator for cutting soft materials. The simulator augments the finite element method (FEM) with a continuous contact model based on signed distance fields (SDF), as well as a continuous damage model that inserts springs on opposite sides of the cutting plane and allows them to weaken until zero stiffness, enabling crack formation. Through various experiments, we evaluate the performance of the simulator. We first show that the simulator can be calibrated to match resultant forces and deformation fields from a state-of-the-art commercial solver and real-world cutting datasets, with generality across cutting velocities and object instances. We then show that Bayesian inference can be performed efficiently by leveraging the differentiability of the simulator, estimating posteriors over hundreds of parameters in a fraction of the time of derivative-free methods. Finally, we illustrate that control parameters in the simulation can be optimized to minimize cutting forces via lateral slicing motions. We publish videos and additional results on our project website at https://diff-cutting-sim.github.io.



There are no comments yet.


page 1

page 3

page 10

page 19


DiffPD: Differentiable Projective Dynamics

We present a novel, fast differentiable simulator for soft-body learning...

ADD: Analytically Differentiable Dynamics for Multi-Body Systems with Frictional Contact

We present a differentiable dynamics solver that is able to handle frict...

Probabilistic Inference of Simulation Parameters via Parallel Differentiable Simulation

To accurately reproduce measurements from the real world, simulators nee...

Inferring the Material Properties of Granular Media for Robotic Tasks

Granular media (e.g., cereal grains, plastic resin pellets, and pills) a...

DiffTune: Optimizing CPU Simulator Parameters with Learned Differentiable Surrogates

CPU simulators are useful tools for modeling CPU execution behavior. How...

Manipulating Soft Tissues by Deep Reinforcement Learning for Autonomous Robotic Surgery

In robotic surgery, pattern cutting through a deformable material is a c...

DiffCloth: Differentiable Cloth Simulation with Dry Frictional Contact

Cloth simulation has wide applications in computer animation, garment de...
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.