Discriminative-Generative Dual Memory Video Anomaly Detection
Recently, people tried to use a few anomalies for video anomaly detection (VAD) instead of only normal data during the training process. A side effect of data imbalance occurs when a few abnormal data face a vast number of normal data. The latest VAD works use triplet loss or data re-sampling strategy to lessen this problem. However, there is still no elaborately designed structure for discriminative VAD with a few anomalies. In this paper, we propose a DiscRiminative-gEnerative duAl Memory (DREAM) anomaly detection model to take advantage of a few anomalies and solve data imbalance. We use two shallow discriminators to tighten the normal feature distribution boundary along with a generator for the next frame prediction. Further, we propose a dual memory module to obtain a sparse feature representation in both normality and abnormality space. As a result, DREAM not only solves the data imbalance problem but also learn a reasonable feature space. Further theoretical analysis shows that our DREAM also works for the unknown anomalies. Comparing with the previous methods on UCSD Ped1, UCSD Ped2, CUHK Avenue, and ShanghaiTech, our model outperforms all the baselines with no extra parameters. The ablation study demonstrates the effectiveness of our dual memory module and discriminative-generative network.
READ FULL TEXT