Discrete Microlocal Morse Theory

09/29/2022
by   Adam Brown, et al.
0

We establish several results combining discrete Morse theory and microlocal sheaf theory in the setting of finite posets and simplicial complexes. Our primary tool is a computationally tractable description of the bounded derived category of sheaves on a poset with the Alexandrov topology. We prove that each bounded complex of sheaves on a finite poset admits a unique (up to isomorphism of complexes) minimal injective resolution, and we provide algorithms for computing minimal injective resolutions, as well as several useful functors between derived categories of sheaves. For the constant sheaf on a simplicial complex, we give asymptotically tight bounds on the complexity of computing the minimal injective resolution with this algorithm. Our main result is a novel definition of the discrete microsupport of a bounded complex of sheaves on a finite poset. We detail several foundational properties of the discrete microsupport, as well as a microlocal generalization of the discrete homological Morse theorem and Morse inequalities.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset