Discovering Latent Concepts and Exploiting Ontological Features for Semantic Text Search

07/15/2018 ∙ by Vuong M. Ngo, et al. ∙ 0

Named entities and WordNet words are important in defining the content of a text in which they occur. Named entities have ontological features, namely, their aliases, classes, and identifiers. WordNet words also have ontological features, namely, their synonyms, hypernyms, hyponyms, and senses. Those features of concepts may be hidden from their textual appearance. Besides, there are related concepts that do not appear in a query, but can bring out the meaning of the query if they are added. The traditional constrained spreading activation algorithms use all relations of a node in the network that will add unsuitable information into the query. Meanwhile, we only use relations represented in the query. We propose an ontology-based generalized Vector Space Model to semantic text search. It discovers relevant latent concepts in a query by relation constrained spreading activation. Besides, to represent a word having more than one possible direct sense, it combines the most specific common hypernym of the remaining undisambiguated multi-senses with the form of the word. Experiments on a benchmark dataset in terms of the MAP measure for the retrieval performance show that our model is 41.9 the purely keyword-based model and the traditional constrained spreading activation model, respectively.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.