Discovering Closed and Maximal Embedded Patterns from Large Tree Data
We address the problem of summarizing embedded tree patterns extracted from large data trees. We do so by defining and mining closed and maximal embedded unordered tree patterns from a single large data tree. We design an embedded frequent pattern mining algorithm extended with a local closedness checking technique. This algorithm is called closedEmbTM-prune as it eagerly eliminates non-closed patterns. To mitigate the generation of intermediate patterns, we devise pattern search space pruning rules to proactively detect and prune branches in the pattern search space which do not correspond to closed patterns. The pruning rules are accommodated into the extended embedded pattern miner to produce a new algorithm, called closedEmbTM-prune, for mining all the closed and maximal embedded frequent patterns from large data trees. Our extensive experiments on synthetic and real large-tree datasets demonstrate that, on dense datasets, closedEmbTM-prune not only generates a complete closed and maximal pattern set which is substantially smaller than that generated by the embedded pattern miner, but also runs much faster with negligible overhead on pattern pruning.
READ FULL TEXT