Discovering Association with Copula Entropy

07/29/2019
by   Ma Jian, et al.
0

Discovering associations is of central importance in scientific practices. Currently, most researches consider only linear association measured by correlation coefficient, which has its theoretical limitations. In this paper, we propose a new method for discovering association with copula entropy -- a universal applicable association measure for not only linear cases, but nonlinear cases. The advantage of the method based on copula entropy over traditional method is demonstrated on the NHANES data by discovering more biomedical meaningful associations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro