Discernible Compressed Images via Deep Perception Consistency

02/17/2020
by   Zhaohui Yang, et al.
12

Image compression, as one of the fundamental low-level image processing tasks, is very essential for computer vision. Conventional image compression methods tend to obtain compressed images by minimizing their appearance discrepancy with the corresponding original images, but pay little attention to their efficacy in downstream perception tasks, e.g., image recognition and object detection. In contrast, this paper aims to produce compressed images by pursuing both appearance and perception consistency. Based on the encoder-decoder framework, we propose using a pre-trained CNN to extract features of original and compressed images. In addition, the maximum mean discrepancy (MMD) is employed to minimize the difference between feature distributions. The resulting compression network can generate images with high image quality and preserve the consistent perception in the feature domain, so that these images can be well recognized by pre-trained machine learning models. Experiments on benchmarks demonstrate the superiority of the proposed algorithm over comparison methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro