Directed percolation and numerical stability of simulations of digital memcomputing machines

02/06/2021
by   Yuan-Hang Zhang, et al.
0

Digital memcomputing machines (DMMs) are a novel, non-Turing class of machines designed to solve combinatorial optimization problems. They can be physically realized with continuous-time, non-quantum dynamical systems with memory (time non-locality), whose ordinary differential equations (ODEs) can be numerically integrated on modern computers. Solutions of many hard problems have been reported by numerically integrating the ODEs of DMMs, showing substantial advantages over state-of-the-art solvers. To investigate the reasons behind the robustness and effectiveness of this method, we employ three explicit integration schemes (forward Euler, trapezoid and Runge-Kutta 4th order) with a constant time step, to solve 3-SAT instances with planted solutions. We show that, (i) even if most of the trajectories in the phase space are destroyed by numerical noise, the solution can still be achieved; (ii) the forward Euler method, although having the largest numerical error, solves the instances in the least amount of function evaluations; and (iii) when increasing the integration time step, the system undergoes a "solvable-unsolvable transition" at a critical threshold, which needs to decay at most as a power law with the problem size, to control the numerical errors. To explain these results, we model the dynamical behavior of DMMs as directed percolation of the state trajectory in the phase space in the presence of noise. This viewpoint clarifies the reasons behind their numerical robustness and provides an analytical understanding of the unsolvable-solvable transition. These results land further support to the usefulness of DMMs in the solution of hard combinatorial optimization problems.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
01/20/2023

Self-Averaging of Digital MemComputing Machines

Digital MemComputing machines (DMMs) are a new class of computing machin...
research
02/20/2018

Memcomputing: Leveraging memory and physics to compute efficiently

It is well known that physical phenomena may be of great help in computi...
research
06/30/2018

Stress-testing memcomputing on hard combinatorial optimization problems

Memcomputing is a novel paradigm of computation that utilizes dynamical ...
research
11/12/2020

Efficient Solution of Boolean Satisfiability Problems with Digital MemComputing

Boolean satisfiability is a propositional logic problem of interest in m...
research
08/02/2012

Optimization hardness as transient chaos in an analog approach to constraint satisfaction

Boolean satisfiability [1] (k-SAT) is one of the most studied optimizati...
research
08/31/2021

Sensitivity Approximation by the Peano-Baker Series

In this paper we develop a new method for numerically approximating sens...
research
06/01/2022

Adaptive time integration of mechanical forces in center-based models for biological cell populations

Center-based models are used to simulate the mechanical behavior of biol...

Please sign up or login with your details

Forgot password? Click here to reset