Direct Product Primality Testing of Graphs is GI-hard

03/03/2020
by   Luca Calderoni, et al.
0

We investigate the computational complexity of the graph primality testing problem with respect to the direct product (also known as Kronecker, cardinal or tensor product). In [1] Imrich proves that both primality testing and a unique prime factorization can be determined in polynomial time for (finite) connected and nonbipartite graphs. The author states as an open problem how results on the direct product of nonbipartite, connected graphs extend to bipartite connected graphs and to disconnected ones. In this paper we partially answer this question by proving that the graph isomorphism problem is polynomial-time many-one reducible to the graph compositeness testing problem (the complement of the graph primality testing problem). As a consequence of this result, we prove that the graph isomorphism problem is polynomial-time Turing reducible to the primality testing problem. Our results show that connectedness plays a crucial role in determining the computational complexity of the graph primality testing problem.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset