DimonGen: Diversified Generative Commonsense Reasoning for Explaining Concept Relationships

12/20/2022
by   Chenzhengyi Liu, et al.
0

In this paper, we propose DimonGen, which aims to generate diverse sentences describing concept relationships in various everyday scenarios. To support this, we create a benchmark dataset for this task by adapting the existing CommonGen dataset and propose a two-stage model called MoREE (Mixture of Retrieval-Enhanced Experts) to generate the target sentences. MoREE consists of a mixture of retriever models that retrieve diverse context sentences related to the given concepts, and a mixture of generator models that generate diverse sentences based on the retrieved contexts. We conduct experiments on the DimonGen task and show that MoREE outperforms strong baselines in terms of both the quality and diversity of the generated sentences. Our results demonstrate that MoREE is able to generate diverse sentences that reflect different relationships between concepts, leading to a comprehensive understanding of concept relationships.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset