Dimensionally Consistent Preconditioning for Saddle-Point Problems

03/20/2020
by   Roland Herzog, et al.
0

The preconditioned iterative solution of large-scale saddle-point systems is of great importance in numerous application areas, many of them involving partial differential equations. Robustness with respect to certain problem parameters is often a concern, and it can be addressed by identifying proper scalings of preconditioner building blocks. In this paper, we consider a new perspective to finding effective and robust preconditioners. Our approach is based on the consideration of the natural physical units underlying the respective saddle-point problem. This point of view, which we refer to as dimensional consistency, suggests a natural combination of the parameters intrinsic to the problem. It turns out that the scaling obtained in this way leads to robustness with respect to problem parameters in many relevant cases. As a consequence, we advertise dimensional consistency based preconditioning as a new and systematic way to designing parameter robust preconditoners for saddle-point systems arising from models for physical phenomena.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset