Dimension-agnostic inference

11/10/2020
by   Ilmun Kim, et al.
0

Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension d while letting the sample size n increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where d_n and n both increase to infinity together at some prescribed relative rate. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming n ≫ d, or d_n/n ≈ 0.2? This paper considers the goal of dimension-agnostic inference – developing methods whose validity does not depend on any assumption on d_n. We introduce a new, generic approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a new test statistic with a Gaussian limiting distribution. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonals. We exemplify our technique for a handful of classical problems including one-sample mean and covariance testing. Our tests are shown to have minimax rate-optimal power against appropriate local alternatives, and without explicitly targeting the high-dimensional setting their power is optimal up to a √(2) factor. A hidden advantage is that our proofs are simple and transparent. We end by describing several fruitful open directions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset