Digital Nets and Sequences for Quasi-Monte Carlo Methods

07/27/2022
by   Hee Sun Hong, et al.
0

Quasi-Monte Carlo methods are a way of improving the efficiency of Monte Carlo methods. Digital nets and sequences are one of the low discrepancy point sets used in quasi-Monte Carlo methods. This thesis presents the three new results pertaining to digital nets and sequences: implementing randomized digital nets, finding the distribution of the discrepancy of scrambled digital nets, and obtaining better quality of digital nets through evolutionary computation. Finally, applications of scrambled and non-scrambled digital nets are provided.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro