Digital Convex + Unimodular Mapping =8-Connected (All Points but One 4-Connected)

03/08/2021
by   Crombez Loïc, et al.
0

In two dimensional digital geometry, two lattice points are 4-connected (resp. 8-connected) if their Euclidean distance is at most one (resp. √(2)). A set S ⊂ Z^2 is 4-connected (resp. 8-connected) if for all pair of points p_1, p_2 in S there is a path connecting p_1 to p_2 such that every edge consists of a 4-connected (resp. 8-connected) pair of points. The original definition of digital convexity which states that a set S ⊂ Z^d is digital convex if (S) ∩ Z^d= S, where (S) denotes the convex hull of S does not guarantee connectivity. However, multiple algorithms assume connectivity. In this paper, we show that in two dimensional space, any digital convex set S of n points is unimodularly equivalent to a 8-connected digital convex set C. In fact, the resulting digital convex set C is 4-connected except for at most one point which is 8-connected to the rest of the set. The matrix of SL_2(Z) defining the affine isomorphism of Z^2 between the two unimodularly equivalent lattice polytopes S and C can be computed in roughly O(n) time. We also show that no similar result is possible in higher dimension.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset